ISOLATION AND STRUCTURE ELUCIDATION OF A NEW COMPOUND CHETHOXYROL FROM HILSA ILISHA

S.I. HAIDER, J. SHAFQAT, S.S. AHMAD*

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan

K. NISSA, and T. AKHTAR

Department of Biochemistry, University of Karachi, Karachi-32, Pakistan

Hilsa ilisha Ham (Clupeidea) is a favorite fish of Sindhis, locally known as "Palla." It is a marine fish and ascends the rivers at the advent of flood. In Sind it begins to ascend in January, and its downward journey starts by September. It has a very high content of lipids, especially from January to June (1).

As a part of systematic biochemical investigation of *H. ilisha* collected in winter from the Indus river, we report here the isolation and structure elucidation of the new compound chethoxyrol [1] from the petroleum ether extract of the liver. The novel feature of the compound is the presence of an unusual naturally occurring acyl group at C-3 as determined through mass spectrometric and ¹H-nmr studies.

Chethoxyrol has the molecular formula $C_{31}H_{52}O_3$ (hrms). Its ir spectrum showed peaks for carbonyl stretching at 1755 cm⁻¹ and C-H stretching at 2900 cm⁻¹. The mass spectrum showed a molecular ion at m/z 472 and a base peak at m/z 368 for the fragment of composition ($C_{27}H_{44}$)⁺ corresponding to M⁺-CH₃CH₂OCH₂COOH. The presence of the ethoxyacetate group was further supported by ¹H-nmr spectroscopy, which showed a singlet at δ 4.31, a two-proton quartet at δ 3.58, and a three-proton triplet at δ 1.24 attributed to O-CH₂-

CO, CH_3 - CH_2 -O, and CH_3 - CH_2 -O, respectively. The remaining part (cholest-5-ene-3 β -oxide) of the molecule was identified by comparison with the published data for similar compounds (2-4) and by the hydrolysis of 1 into cholesterol.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURE.—The melting point was recorded in a glass capillary tube and is uncorrected. Ir (CHCl₃) and uv (MeOH) spectra were measured on JASCO IRA-1 spectrometer and Pye-Unicam SP-800 spectrometers, respectively. Mass spectra were recorded on Finnigan MAT 112 and MAT 312 double focusing mass spectrometers connected to a PDP 11/34 computer system. ¹H-nmr spectra were recorded in CDCl₃ on a Bruker Aspect 300 with TMS as internal reference. The purity of sample was checked on tlc (Si gel siF₂₅₄ precoated aluminium plate).

MATERIAL.—The fish *H. ilisha* was collected from the Indus river Sind, Pakistan, in January 1986, and identified by Dr. M.M. Rabbani, National Institute of Oceanography, 37-K/6 P.E.C.H.S., Karachi-29, Pakistan, where the voucher specimen is deposited.

ISOLATION.—The livers (7 kg) of H. ilisha were homogenized and repeatedly extracted with petroleum ether. The petroleum ether solution was washed with H_2O and repeatedly shaken with 90% MeOH. The methanolic fraction was diluted with H_2O to 50% and extracted successively with petroleum ether and Et_2O . The ethereal layer was washed with H_2O , dried

(Na2SO4), and concentrated in vacuum. The residue thus obtained was subjected to tlc (Si gel, CHCl₃-C₆H₆-MeOH, 7:2.8:0.2), resulting in the isolation of chethoxyrol (yield, 5 mg, 7.14 × $10^{-5}\%$), as an off-white crystalline solid that, on recrystallization from EtOAc-MeOH (1:1), formed rectangular plates; mp 82-83°; $[\alpha]^{20}D =$ -53.8° (CHCl₃); hrms m/z (rel. int. %) 472.3918 (M+, calcd for C₃₁H₅₂O₃ 472.3916) (8), 385.3468 ($C_{27}H_{45}O$)⁺ (5), 368.3451 $(C_{27}H_{44})^+$ (100), 353.3204 $(C_{26}H_{41})^+$ (30), $260.2501 (C_{19}H_{32})^{+} (32), 255.2119 (C_{19}H_{27})^{+}$ (28), 247.2430 ($C_{18}H_{31}$)⁺ (36), 213.1638 $(C_{16}H_{21})^+$ (22), 147.1170 $(C_{11}H_{15})^+$ (68) and 121.1018 (C₉H₁₃⁺) (30); ir 2900 (C-H stretching) and 1755 (C=O stretching) cm⁻¹; ¹H nmr δ 5.37 (1H, d, J=4.2 Hz, H-6), 4.70 (1H, dddd, $J_{2\alpha,3\alpha} = 4.2 \text{ Hz}, J_{2\beta,3\alpha} = 9.2 \text{ Hz}, J_{3\alpha,4\alpha} = 3.4$ Hz, $J_{3\alpha,4\beta}$ =12.1 Hz, H-3\alpha), 4.31 (2H, s, O- CH_2 -CO), 3.58 (2H, q, J=7.0 Hz, CH_3 - CH_2 -O), 1.24 (3H, t, J=7.0 Hz, O-CH₂-CH₃), 1.02 (3H, s, H-19), 0.91 (3H, d, J=6.5 Hz, H-21),0.864 (3H, d, J=6.5 Hz, H-26), 0.861 (3H, d, J=6.5 Hz, H-27, 0.67 (3H, s, H-18).

HYDROLYSIS OF 1 INTO CHOLESTEROL.— Chethoxyrol (3 mg) was refluxed with 5% NaOH for 15 min on a boiling water bath. The reaction mixture was then shaken with EtOAc, washed with H₂O, and dried over Na₂SO₄. On removal of the solvent, cholesterol was obtained as a white crystalline solid, mp 149-150°. Ms m/z 386 (M⁺); ¹H nmr δ 5.36 (1H, d, J=4.2 Hz, H-6), 3.52 (1H, dddd, J_{2 α ,3 α}=4.2 Hz, J_{2 β ,3 α}=9.2 Hz, J_{3 α ,4 α}=3.5 Hz, J_{3 α ,4 β}=12.0 Hz, H-3 α), 1.02 (3H, s, H-19), 0.92 (3H, d, J=6.5 Hz, H-21), 0.863 (3H, d, J=6.5 Hz, H-26), 0.860 (3H, d, J=6.5 Hz, H-27), 0.69 (3H, s, H-18).

LITERATURE CITED

- M.R. Qureshi, "Marine Fishes of Karachi and the Coasts of Sind and Makran." Government of Pakistan Press, Karachi, 1955, p. 15.
- Z.V. Zaretskii, "Mass Spectrometry of Steroids," John Wiley and Sons, Inc., New York, 1976.
- L.G. Partridge and C. Djerassi, J. Org. Chem., 42, 2799 (1977).
- I. Rubinstein, L.J. Goad, A.D. Glague, and L.J. Mulheirn, *Phytochemistry*, 15, 195 (1976).

Received 2 June 1986